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By Walter G. Vincentl and Cleo B, Wagoner -
SUMMARY

A theoretical study is described of the aerodynamic characteristics
at amall angle of attack of a thin, double-wedge profile in the range
of supersonic flight speed in which the bow wave is detached. The
analysis 1s carried out within the framework of the transonic (nonlinear)
small-disturbance theory, and the effects of angle of attack are regarded
as &a small perturbation on the flow previously calculated at zero angle.
The mixed flow about the front half of the profile is calculated by
relaxation solution of a sultaebly defined boundary-value problem for the
transonic small-disturbance equation in the hodograph plane (i.e., the
Tricomi equation). The purely supersonic flow about the rear half is
found by an extension of the usual numerical method of characteristics® ~
Analytical results are also obtained, within the framework of the seme
theory, for the range of speed in which the bow wave is attached and the
flow is completely supersonic.

The calculations provide, for vanishingly small angle of attack,
the following information as a function of the transonic similarity
parameter: (1) chordwise lift distribution, (2) lift-curve slope, and
(3) position of center of 1ift. As in previous studies, the aerodynamic
characteristics of a profile of given thickness ratio show little varia-
tion with free-stream Mach number as the Mach number passes through 1.
As the Mach number is increased to higher values, however, the 1lift-
curve slope rises to a pronounced meximum in the vicinity of shock
attachment and then declines. Correspondingly, the center of 1ift moves
forward toward the leading edge and then returns aft. These findings
are in marked contrast to the behavior of the drag coefficient at zero
angle of attack, which was found in earlier work to decrease monotonl-
cally as the Mach number lncreased above 1. At Mach numbers above that
for shock attachment, the results of the present calculations tend toward
those given by classical linear theory.

lportions of this work were reported at the VIITth International
Congress on Theoretical and Applied Mechanics, Istanbul, Turkey,
August 20-28, 1952.
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INTRODUCTION

The theoretical problem of the transonic flow over a thin, double-
wedge profile at zero angle of attack has been treated in several papers
in recent years. These papers have in common that they employ the
simplifying concepts of the transonic small-disturbance theory and
utilize the hodograph transformation to linearize the resulting mathe-
matical problem. Following this approach, Guderley and Yoshihara
(reference 1) began by solving the problem for a free-stream Mach
number of 1, using analytical methods for the mixed flow over the front
wedge and the method of characteristics for the purely supersonic flow
over the rear. ©Somevwhat later, the present authors, using a combina-
tion of relaxation methods and the method of characteristics (refer-
ences 2 and 3), extended the results to free-stream Mach numbers greater
than 1, where a detached bow wave occurs ahead of the profile. At about
the same time, Cole (reference U4) obtained an analytical solution for
the flow over the front wedge at subsonic flight speeds, utilizing, in
effect, the specilal assumption of a vertical sonic line from the
shoulder of the wedge. More recently, Trilling (reference 5) has been
able to remove this special assumption and, with the aid of less strin-
gent approximations regarding the flow over the rear wedge, to extend
the solution for the subsonic case to include the complete profile. As
a result of these investigations, the problem of the double-wedge
profile at zero angle of attack may be regarded as substantially solved
within the limitations of the transonic small-disturbance theory. The
experimental studies of Liepmann and Bryson (references 6 and 7) and
Griffith (reference 8) indicate that the theoretical findings are in
fundamental agreement with the physical facts.

In a recent paper (reference 9), Guderley and Yoshihara have con-
tinued their investigations of the double-wedge profile at Mach number 1
by considering the influence of & vanishingly small angle of attack.

The basic idea in this later work is to regard the effects of angle of
attack as a first-order perturbation on the nonlinear flow previously
calculated at zero angle. This approach leads to a linear boundary-
value problem in both the physical and hodograph planes. The calcula-
tion for the front wedge is still carried out, however, in the hodograph
plane, since the basic procedures can then be taken over directly from
the previous work. By this means, Guderley and Yoshihara obtain results
for the lift-curve slope of the profile at zero angle of attack and for
the corresponding distribution of 1lift along the chord.

The aim of the present paper is to extend the results for the
double wedge at angle of attack to the case of supersonic £light with
detached bow wave. The fundamental ideas of Guderley and Yoshihara are
followed in reducing the calculations for the front wedge to a perturba~
tion problem in the hodograph plane. The detailed formulation of the
problem is, however, necessarily different in the present case. The
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boundary conditions for the problem eppear in terms of the results
already obtained at zero lift (references 2 and 3), and the solution is
carried out by numerical methods which differ only slightly from those
devised for the earlier work. The 1ift on the rear wedge is calculated
by an extension of the method of characteristics. The body of the
paper is devoted to the detailed formulation of the boundary-value
problem in the hodogreph plane and to a discussion of the final results.
Noteworthy differences between the numerical procedures used in the
present work and those already described in reference 3 are treated in
appendices at the end of the report.

NOTATION

Primary Symbols

ax critical speed (i.e., speed at which the speed of flew and
the speed of sound are equal)
b numerical coefficient
(See equations (39) and’(L0).)
c alrfoil chord
¢y 1ift coefficient <1if’° per unit sPEn.)
. : qoC -
Cm moment coefficient for momentg taken about leading
edge moment per unit spani)
qoc®
P-DP
Cp pressure coefficient <——9>
4o
Iy integral defined by equation (45)
ko numerical constant
(See equation (10).)
M Mach number
i} slope of segment of Mach line in characteristics net

P static pressure
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locel lifting pressure (i.e., difference between static
pressures on upper and lower surfaces)

dynamic pressure
airfoil thickness
speed of flow
Cartesian coordinates .

generalized Cartesian coordinates
(See equations (43).)

chordwise position of center of 1ift

slope of curve of 1lift coefficiént versus true angle of
attack evaluated at zero angle

slope of curve of moment coefficient versus true angle of
attack evaluated at zero’angle

normalized angle of attack; also denotes true angle of
dc
attack vwhen used in derivatives such as ?E%’ ete.

absolute value of 17 at left-hand limit of lattice
ratio of specific heats (1.4 for air)
basic lattice interval

fuﬁction of 1 and O
(See equation (46).)

normalized speed of Fflow
(See equation (1a) and page 10.)

special values of 7
. (See sketch (m) on page 46.)

normalized inclination of flow; 6 also denotes true inclina-
tion of flow in equation (1Db)
(See equation (1b) and page 10.)

normalized half angle of wedge

transonic similarity parameter
(See equation (13).)



TFACA TN 2832

6\}"A

a,b,c

A,B

0,1,2,
ete.

()
()

fluid density
stream function
incremental values of stream function
(See equations (A9) and (All).)
Subscripts
points in characteristics net
(See page page 43.)

components of total\stream function
(See equation (39).)

conditions in free stream

singular solution
(See.equations (46) and (AT).)

value at a prescribed lattlice point
conditions at critical speed
Superscripts

3

quantities determined at zero angle of attack

derivative with respect to normalized angle of attack

evaluated at zero angle
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BOUNDARY-VALUE PROBLEM IN HODOGRAPH PLANE

Description of Flow Field

Sketch (a) is a drawing of the idealized, inviscid flow which

Shock wave
Streamline
Sonic line

Expansion Mach
Compression) /lines

Sketch (a)

may be expected about a wedge profile when the angle of attack is
sufficiently less than the semiapex angle of the wedge. Sketch (b)
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shows the corresponding hodograph representation of the flow over the
front wedge, which is the region of prime theoretical concern. Except
for the substitution of the detached bow wave in place of the infinite
free stream, these representations follow the lines assumed by Guderley
and Yoshihara in reference 9. The corresponding drawings for zero angle
of attack, which are fundamental to the present case, have been described
in detail in references 2 and 3.

In the present example, the path of the central streamline in the
physical and hodograph planes is briefly as follows: The streamline
leaves the bow wave in the physical plane (or the shock polaer in the
hodograph plane) at point A. It then proceeds with decreasing subsonic
speed to a stagnation point O on the underside of the profile. At O
the streamline branches. The lower branch runs downstream along the
lower surface of the profile with fixed inclination but increasing
speed. The sonic speed is reached at the shoulder L, where the speed
then increases discontinuously in accord with the Prandtl-Meyer rela-
tions. The shoulder itself maps in the hodograph onto the upgoing
characteristic IM. The upper branch of the central streamline proceeds
from O upstream along the surface of the profile. The inclination here
is again fixed by that of the surface, and the speed increases to the
sonic value at the leading edge J. At this point the flow is charac-
terized by another Prandtl-Meyer expansion to supersonic speed.

The flow configuration which should be assumed on the upper surface
near the leading edge is open to conjecture. Since the geometrically
available angle of turn will, for any thin alrfoil, be greater than the
130° permissible for expansion to a vacuum, a region of separation 1s
to be expected. If the angle of attack is not too great, this region
will probably be closed, with the central streamline reattaching to the
upper surface a small distance behind the leading edge. This reattach-
ment will be followed by a compression of the flow through & system of -
shock waves whose arrangement is sketched only formally in the physical
plane (and not at all in the hodograph plane, where the correct repre-
sentation would probably lie on several sheets). ' The effects of the
flow near the leading edge will be mentioned later, but the exact
process will remain undefined. Whatever the details, the speed on the
upper surface will return to a subsonic value at some point K just
downstream of a terminating, normal shock wave. From K the central
streamline continues at fixed inclination downstream slong the upper
surface, the speed increasing once more to the sonic value at the
shoulder B. At this point another expansion takes place, similar to
that which occurs at the corresponding point on' the lower surface. .In
this case the shoulder is represented in the hodograph hy the down-
going characteristic BG. o . :

The supersonic expansion fan from the shoulder at B (and similarly
at L) is discussed in detail in references 2 and 3. Suffice it here to
say that the supersonic flow field, of which the expansion fan is the
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initial part, is separated into two regions by the Mach line GE, which
runs from the shoulder to the sonic point on the bow wave. (This line
was termed the "separating" Mach line in reference 2.) The supersonic
flow in the region upstream of the Mach line GE 1s interdependent with
the subsonic field between the bow wave and sonic line. To obtain a
solution for the front wedge, & problem in transonic flow must there-~
fore be solved for the subsonic field and the interdependent portion of
the supersonic expansion fan. Conditions in the supersonic flow down-
stream of the Mach line GE have no influence upon the subsonlc field.
The continuation of the flow beyond GE can be accomplished by purely
supersonic methods once the solution of the transonic problem is known.

Aside from the obvious lack of symmetry in the present case, the
main difference between the flow here and that previously studied at
zero angle of attack is the existence in the present problem of the *
localized supersonic region in the vicinity of the nose. As pointed
out, conditions in this region are difficult to formulate. The problem
has been considered by Guderley and Yoshihara (reference 9) in the
course of their work at Mach number 1. They find that, if the nose
region is disregarded in the hodograph and the boundary condition
along KB is fulfilled all the way in to O, then the influence on the
1lift of the resulting fictitious flow at the nose is of somewhat higher
than the second order in the angle of attack. This suggests that the
effects of the real flow at the nose masy be neglected in a first-order
anglysis such as the present. In the work which follows, as in the
calculations of Guderley and Yoshihara, the supersonic region at the
leading edge will therefore be disregarded.

Formulation of Boundary-Value Problem

As in reference 3, the analysis is based on the equations of the
transonic small-disturbance theory with the stream function ¥ as the*
dependent varisble. If the effects of the flow at the nose are ignored,
the problem of the wedge at angle of attack o 1is then readily formu-
lated as & boundary-value problem in the hodograph plane. To solve this
problem for vanishingly small o, it will be assumed that the solution_ ¥
at angle of attack can be expressed as the sum of the basic solution V¥
previously obtained at zero angle plus a perturbation term a¥', where L
is a function which does not itself involve a. By consideration of the
difference between the boundary-value problems for ¥ and ¥, a problem
for the perturbation function V' can be formilated. The boundaries for
this problem turn out to be the same as those for the problem at zero
angle, and the boundary values themselves appear in terms of VY. The
details of these matters will now be given. The reader who is Interested
only in the results can turn directly to the section Chordwise Distribu-
iion of Lift on page 28.



NACA TN 2832 ' 9

Basic equations.- The basic equations will be taken in the form
given in reference 3, that is, in terms of small disturbances from the
critical speed &a4.2 The independent variables are the normalized speed n
and the normalized inclination % as defined by the relations

V/a, -1
Vs ——— (12)
Vo/a*"l
% = _2_>1/2 9 (1)
7+1 (Vo/ay - 1)%/2 _
where
v local speed of flow
2] local inclination of flow relative to direction of free stream

Vo Tfree-stream speed

ay critical speed (i.e., speed at which the speed of fiow and the
speed of sound are equal)

v4 ratio of specific heats
Use of these variables is equivalent to introducing the rules for tran-
sonic similarity. In terms of the foregoing hodograph variables, the

differential equation for the stream function V¥ as given by the tran~
sonic small-disturbance theory is

Vi - Mgy =0 (2)

275 discussed in several recent papers (e.g., references 10 and ll), the
theory can also be formulated in terms of disturbances from the free-
stream speed V,. This latter, less restrictive formulation reveals
clearly the relationship which exists between the transonic small-
disturbance theory and the familisr linear theory of subsonic or super-
gsonic flow. As shown by Spreilter, (see page 9 of reference 11), an ax
analysis will yield values of the pressure coefficlient identical to
those of a V, analysis provided the pressure coefficient and similar-
ity parameter in the former case are taken as in equations (%) and (13)
below. If this procedure is followed, the results of the ay analysis
may even be expected to tend toward those of linear theory as the free-
gtream Mach number increases or decreases from 1. (An analytical
example of just this behavior has been given by Bryson in appendix A
of reference 7.) It appears, therefore, that the a, formulation,
when suitably used, gives results of wider theoretical validity than
would be anticipated on the basis of its own rather restrictive under-

lying assumption.
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This is essentially the linear differential equation first studied by
Tricomi (reference 12). It is elliptic for 7T <O (subsonic speeds)
and hyperbolic for >0 (supersonic speeds).

The transformation from -the hodograph to the physical plane is
governed by the differential relations

ae 1 (741)(Vb/a*‘l) 1/2
ax = p*a*[ 5 ] (2vza® + ¥a8) (32)
e (¥pd + ¥dB) = P av - (3p)

vhere x=x(%,0) and y=y(¥,&) are physical coordinates (horizontal and
vertical, respectively) corresponding to a given velocity ﬁ; The
symbol p, denotes the fluid density at the critical speed a,. Within
the approximation of the transonic small-disturbance theory, the pressure
coefficient Cp= (p-po)/qO can be calculated from the relation

© = p(V,/a, -1) (F-1) (k)

The local Mach number is related to the speed of flow by the equation

M-1_V
= a (5)

For simplicity of notation, the tilde will be omitted from the
symbols 7 and @ in the remainder of the development. It is to be
understood, unless stated otherwise, that the quantities 17 and 6 are
themselves the normalized quantities defined by equations (1).

Problem at zero angle of attack.- When the angle of attack is zero,
the localized region of supersonic flow at the leading edge disappears
from sketch (a), and the flow field becomes symmetrical about the chord
line. The corresponding boundary-value problem in the 1,0 plane has
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been set forth in reference 3. It is restated in sketch (c), where both
the upper and lower halves of the flow field are now included. In this
representation, the surfaces of the wedge appear as the semi-infinite

horizontal lines OB and OL, and the subsonic portion of the shock polar
appears as the curve NAE.

2£ =const ‘-/;g (7, 4, /dy
#(9.6,)=0

£08) + &JC%¥Q4106=0 N

5}2/3
E’ /
0 = > 7
70
for V-
5/7(0 q) .,
£00.6)+ /@ 725770 —/‘
#9.74,)=0 1%
0 = 7 -4,
0
‘gzcamﬂlégﬂéw%}dy
Sketch (c)

If the stream function for zero angle -of attack is denoted by
¥=1(n,0), the differential equation to be satisfied here is given by
equation (2) as

wﬁﬂ - QnWée =0 : s (6)

The requirement that the flow shall be tangent to the surfaces of the
wedge provides the boundary conditions

¥(n,+6y) = 0  for 1<0 (7)




12 ' NACA TN 2832

where 6, denotes the normalized half-angle at the leading edge. The
stagnation point at the leading edge 1s represented in the present
theory by the condition that

¥—>0  for n—>-w, -6,<6<6y (8)

Along the shock polar NAE, the relations for an oblique shock wave
require that :

¥ F -;——}m«/l+n Vv, =0 (9)

for

6 =+ (1-q) ¥14m, -1<1<0

Along the sonic line, boundary conditions are prescribed which represent
the influence exerted on the subsonic field by the interdependent portion
of the supersonic expansion fans. On the basis of the procedures given
in reference 3, this influence can be represented completely by the
requirement that .

- o ¥y(0,6,) ,
¥y, (0,6) + kafew (20, o) 2/ a6, =0 (20)

+

where the upper signs apply for 1<6<6y and the lower signs
for -6w<O6<-1. The constant k., which appears here 1s given by

24/3 g

= = 0.3429

where T'(1/3) is the gamma function of the argument 1/3. The use of
the relations (10) as boundary conditions along the sonic line reduces
the transonic problem of the flow over the front wedge to a purely
elliptic problem in.the hodograph plane.

In addition to the foregoing conditions, a further condition is
necessary to assure that the solution for V¥ will give the proper scale
when transformed to the physical plane. This is furnished, for example,
by the following expression for the half-chord of the profile, found by
integrating equation (3a) over either OB or OL:
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(741) (¥, faue1) /2 1° -
_ 2
%— 9*43*[ 20 :l fw ﬂ*e(n,’iOW) an (:Ll)

If the chord of the profile is given, this condition, together with the
previous conditions (7) through (10), is sufficient to determine a unique

solution to the problem.

It is obvious from the nature of the boundery-value problem (and

also from considerations of symmetry in the physical plane) that the
solution for ¢ must 'be antisymmetric with respect to 6. The problem
can be simplified, therefore, by discarding the lower half of the hodo-

graph and replacing it by the condition

¥(1,0) =0 for ng-1 (12)

The resulting problem is readily solved with numerical methods by
for exemple,

assuming an arbitrary value of ¥ at some point (as
point E), solving for ¥ in the upper half of the hodograph subject to

the conditions (7), (8), (9), (10), and (12), and then adjusting the
isolution to satisfy condition (11).

‘ It is apparent from the boundary conditions'thét the solution of
oregoing problem will depend on the value of the parameter Oy,

'the £
Iwhich defines the position of the upper and lower boundaries in the
| hodograph. This parameter is related to the more familiar transonic

| similarity parameter £, by the relation
f . .
Mo® -1 2t/2 (13)
[(r+1) (£/e))/° 0,273

; where t/c is the thickness ratio of the complete double~wedge profile.
In references 2 and 3 the solution of the foregoing problem has been

carried out for four values of 6y.
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Problem at angle of attack.- If the supersonic region at the
leading edge is ignored, the boundary-value problem for the wedge at
angle of attack appears in the 10,0 plane as shown in sketch (a).

-4
c 0 A
3 =const, /;;/5 (9,6, a:a)dy
—_— _;_. _—— ] 4,
—2 B -
o= ¥y, 6a;a)=0 ’ ’ 4e
1
&a’
£
/+7
4 1
7
for VAt
N
s
(27
,%(0,4,,;%1/(;_&_5_;;;44:0_/

-%-ﬂ
——————————————————————————— 4—6‘7'
_ Yy, aa)=0

0 = 5 7 bra
2£= const. ﬁ% (p,-4,a;a)dy

Sketch (d)

The primary difference between this and the previous sketch is that the
lines OB and OL, which represent the surfaces of the wedge, have each
been displaced downward by an amount o, where a ' is the angle of
attack normalized in the same manner as the other angles of inclination
(cf. equation (1b)).2 '

8Tn reference 9, Guderley and Yoshihara find it convenient to obtaln the
angle of attack by holding the profile fixed and changing the inclina-
tion of the free stream. This procedure, if applied in the present
case, would require the eventual calculation of the second derivatives
of V¥ on the shock polar. The present procedure, which holds the free
stream fixed and changes the attitude of the profile, requires the cal-
culation of only a first derivative of ¥ at the surface of the wedge.
Since the accuracy of numerical differentiation decreases with increas-
ing order of the derivative, the present approach is to be preferred in
a numerical analysis. )
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The stream function at angle of attack will be denoted here
by ¢=¢(n;6;a), the latter notation being used to indicate the depend~
ence of ¥ wupon the parameter a. The function V¥ must satisfy the
differential equation (2), which is now written

The boundary conditions at the surface of the wedge now require that

¥(n,204-a5a) = 0 for n<0 (15)

while the condition at the leading edge becomes
y—=>0 for n—>-®, -Oy-a<0<Oy-a (16)

The shock polar NAE is unaltered from the previous problem, and the
condition on this boundary has the same form as before. The conditions
along the segments BE and LN of the sonic line are now

6 ¥5(0,6;a) :
¥n{0,05a) + kef 01%:% d6; = 0 (x7)
10y-a [*(6,-0)1%/°

where the lower limit of the integral has been changed in accord with
the displacement of the points B and L. The upper signs in equation (17)
now apply for 1£60<6y-a and the lower signs for -By-a<6<- 1. An
expression for the half-chord of the profile can be found again by inte-
grating equation (3a) over the line OB or OL, which gives

' - 1/2 ro
-g_= 2 [(74—1) (Vo/a* l)] kfnw,e(n’i.ew_a;a) dn (1.8)

PyxTx 2

If the chord of the airfoil is specified - say the same as at zero angle
of attack - then the foregoing conditions ere sufficient to determine a

solution. No simplification based on symmetry considerations 1s possible
in the present case.

Perturbation problem.- The problem of the preceding section conceiv-
ably could be solved by numerical methods - though with great labor - for

arbitrary values of a. Efforts in this direction would hardly be justi-~

fied, however, in view of the fundamental omission of the localized
supersonic flow at the leading edge. It 1s more reasonable to examine
the problem for vanishingly small o, where this omission is valid and
where there is hope that the amount of labor might be reduced.
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To proceed along these limes, it is assumed that ¥(n,0;a) may be
expanded in a power gseries of the form ‘

¥(n,030) = ¥(n,6850) + & ¥ (n,830) + 0(a®)

where, for present purposes, only terms to order « need be retained.

The first term on the right represents the solution at o« =0 and is

bhus identicel with the function V¥(n,8) previously introduced. The
second term will be abbreviated by means of the notation W'(n,e)swdﬂn,e;ol
1f terms of 0(a®) are discarded, the expression for ¥ can then

be written

¥(n,05a) = ¥(n,0) + « ¥ (n,6) C(19)

By comparison of the previous boundary-value problems for ¥ and i@ a
problem for the perturbation function ¥' will now be formulated.

The differential equation for Y1 follows at once from the differ-
ential equations (6) and (14) and the substitution (19). It is obviously
of the same form as the previous equations, that is,

.

The boundary conditions appropriate to the surface of the wedge are
established as follows: The boundary condition (15) for V¥ 1is first
rewritten, with the aid of the substitution (19), in the form

¥(n,204-a) + a ¥'(n,t6y4-a) = O (21)

@y expanding in Taylor's series gbout the lines 6 = iew, the functilons
¥ and ' can be written

F(n,20y-a) = F(n,260) - @ Fy(n,8y) + O(s?) (222)
‘!”(Tl:iew"a') = ‘lﬂ(n:iew) - G‘V‘e(n,iew) + O(a'z) (22b)

Tf these ‘expensions are substituted into equation (21) and ¥(m,%6,) set
equal to zero in accord with the boundary condition (7), one obtains
finally for vanishingly small a

#"(ﬂ’iew) = ‘I‘e("]:iew) for n<0 (23)
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This is the boundary condition for V' appropriate to the surface_of
the profile. It will be noted that the condition is applied in the
hodograph at the original, undeflected location of the surface

(1.e., 9=iew). The condition depends for its application on a knowledge
of the basic solution V.

The boundary condition for V' at the leading edge follows
directly from the conditions (8) and (16). It is the same as the corre-
sponding condition for V¥, that is, :

y'—>0 for —>-», -0y S6S6y (24)

As was indicated, the functions ¥ and ¥ both satisfy the same
linear, homogeneous boundary condition on the shock polar. It follows,
as in the case of the differential equation, that the condition for V!
on the polar is agaln the same, that is,

- 1+ _ ‘ :
Vi # 3+5m T Vg = 0 (25)
for

6 = #(1-1) 14+, -1E0gO0

The treatment of the boundary condition along the sonic line is
complicated by the fact that the parameter o a&appears in the condi-~
tion (17) as a term in the lower limit of the integral. For simplicity,
the details will be confined here to the upper segment BE of the sonic
line. For this segment, condition (17) becomes, after substitution
from equation (19), )

_ 6§ o (0,0
qfn(o,e) + cr.‘{f’n(O,G) + k2f f_e_(_o_’f_l;)__ del + &2\/‘ -—.Qi—’——l—)- d'el =0

2/3 2/3
ewq%(el'e) gwa(?l‘e) (26)

applicable for 1<6<6Oy-a. To simplify this equation, the first
integral is rewritten

fe \{'}9(0:91) a6 _fs 11—"9(0)91) a6 Jaw_a ‘QI-G(O,GJ_) a6 7)
1" T o /a i ° Y 1
W

b (02-0)7° 6, (02-0)%/° (62-0)"°
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It can be shown from Guderley's analysis of flow at & convex corner
(reference 13) that, for vanishingly small values of (6y=-6), the
variation of ¥ along the sonic line must be of the form

#(0,0) = T (04-0)""° (28)

where C is a constant for any given value of 6y. Differentiating
this relation, one obtains

F5(0,6,) ~ (045-00)""°

Substitution of this result into the second integral of equation (27)
yields the fact that this integral must be proportional to a%/3, The
first integral in equation (26) can thus be written

o  ¥,(0,6;) 6 ¥5(0,6,)
f —'—""—(961_6);/3 1 = —————-—-—(991_9);/3 ae, + 0(at/3) (29)

By~

The second integral of equation (26) can be treated similarly by first
rewriting it as

G'W—CI 4
6 ¥'5(0,6 ' v (0,6
[ - [T [ R (30)
by (61-0)% (6,-6)%/ (61-6)

To deduce the variation of ¥' for vanishingly smell (6y-8), it is
first noted that a result similar to equation (28) must also hold for
the variation of ¥ relative to the displaced location of the shoulder,
that is,

4/3

¥(0,8) = C (6y-c-6)

The quantity € = C(a) is a differentiable function of a which reduces
to € when a = 0. Since a will eventually be made less than any
assignable value of (6y-68), this expression may be expanded in the form

¥(0,6) = ¢ (0,-8)*/° [ 2 o<a2>] (31)
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Now it follows from the definition of V' that

1im ¥(0,6) - ¥(0,6)

Ip" (0,6) = aA—>0 a

Substitution from equations (28) and (31) thus gives for the variation
of ¥' in the vicinity of the shoulder

¥1(0,0) = & [C - C (p,-0)/2 _53* C (64-0)%+ O(a)]

a-—>0
or
' 4/3 L i/3
¥1(0,6) = C' (64,-6) - '3‘ C (6w-0) (32)
where C'=Cg(0). This means that for vanishingly small (6y-6)
-2
¥l (0,6,) ~ (6y-61) ™"
On the basis of this result equation (30) can be written
6 ¥7(0,6;) 6474(0,61)
f ° ’2js a6, =f = ,2/3 a0, + 0(a/®) (33).
[ (6,-6) 6, (6,-6)

If equations (29) and (33) are substituted into equation (26) and the
boungary condition (10) is taken into account, one then obtains for
vanishingly small «

qu(o,e)+k2f%‘9(0—;$£— 3, = 0 (34)
-

Ow
where 1£6Z<6y. The boundary condition for V' along the upper segment
of the sonic line is thus the same as the condition for V. The same
result can be shown to hold along the lower segment.

It remains to impdse the condition that the chord of the airfoil
must remain unaltered during change in angle of attack. To express this
condition in terms of V', equation (19) is first substituted into
equation (18) to obtain

c 2 I:(y+l)(vo/a*~l) t
2 Py B

: J /2’-;[011[14‘,9(1];9?,-@)' + or.‘lf'e(n,iew-a)] dn (35)
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As in the treatment of the boundary conditions along the upper and
lower boundaries, Taylor's expansion gives

ﬁe(ﬂ:iewﬂ) ‘Fé(ﬂ,i%)-a‘yee(ﬂ,iew) + 0(32) , (369')

¥ (n, ¥oy-a) Vp(n,%6y) ~a¥'gg(n,20y) + 0(a®) (36b)

It can be inferred directly from the boundary-value problem for ¥
that Vgo(n,%0y;) = 0, so that the term involving this quantity may be
dropped grom equation (36a). Substitution of ‘equations (36) into
equation (35) and application of the previous expression (11) leads,

for vanishingly small a, to the condition that

(o]
[ nwpnste) an = o (37)

-

The boundary conditions (23), (24), (25), (34), and (37) are sufficient
to determine the solution for V' in the hodograph.

As with V¥, the boundary-value problem for V¥'! can be simplified
from considerations of symmetry. Since V¥ is antisymmetric with
respect to 6, the nonhomogeneous boundery condition (23) which is
imposed on V¥' along the upper and lower boundaries must be symmetric
in this variable. The remaining conditions, which are all homogeneous,
are also symmetric. Tt follows that V¥' itself must be a symmetric
function of 6.% The problem can therefore be simplified by again

eliminating the lower half of the hodograph and substituting in this'
case the condition that

'9(1,0) =0  for ng- 1 (38)

4Ehis result can also be argued directly from considerations in the
physical plane. It is necessary to make two observations as follows:
(1) since the profile itself is symmetric asbout the chord line, the
flow field at a negative angle of attack must be the inverted image
of the flow field at an equel positive angle. (2) To be consistent
with the basic perturbation assumption, it must be presumed that all
changes in the flow field are smooth functions of angle of attack
at. a = 0. These statements taken together imply that the vertical
distance between any two points of equal 1 and corresponding posi-
tive and negative 6 1is, to a first order, unaffected by angle of
attack. It follows that, for sufficiently small a, the increments
in ¥ and ¥ between the two points are equal and hence, on the basis
of equation (19), that'the value of V¥' at the two points is the same.
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The problem which is finally to be solved 1s thus as sumarized in
sketch (e). The boundaries for this problem are identical with those
used to obtain V. The boundary conditions are also identical insofar
as the shock polar and sonic line are concerned. The only differences
between the two problems are in the conditions imposed along the bound- -
aries OB and OA. As was the case with V¥, the solution here must be a
function of 6y.

4

o A

- Jr%n4,)d7-0 h
0 ~— ¢J:g? 4,
s e

‘ gk, [ %% ag-0 ——

/bf 7—.--@ E

!

4~ 55 TR <O
0 = g=0 : ﬁﬂ ———
Sketch (e)

Because of the nature of the integrel condition along the upper
boundary OB, a direct solution for V' is not feasible by numerical
methods. To obtain a solution, therefore, the problem is broken down
into two subsidiery problems by means of the substitution

¥ o= ¥+ bV’ (39)

where Db 1is a constant whose value is to be determined. Boundafy—value
problems for V', and y'g are then defined as shown in sketch (f).

(s 0 -

Problem ﬁu’g{ fbvbkynAﬂW'gy
Sketch (f)
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In both problems the integral condition along the upper boundary OB is
ignored for the time being, and an arbitrary condition is introduced
instead at the point E. In the problem for w.A’ only the nonhomoge-~
neous condition (23) is imposed at the upper boundary, and the condition
at E is the homogeneous one that vﬁA = 0. In the problem for W%B

the homogeneous condition V¥'y = O 1is imposed along OB, and the condi-
tion at E is that V' has an arbitrary value V¥’ # 0. The conditions
at the remaining boundaries are the same as in sketch (e) and are there-
fore not repeated here. It is apparent that a superposition of ¢’

and W*B will constitute a solution of the original problem provided the
value of b 1is adjusted so that the integral condition (37) is satisfied
on the upper boundary. The necessary equation for b is found by sub-
stituting the expression (39) into condition (37) and is

(o]
—/m\n ﬂf’Ae(n,ew) dn
b=- (k0)

o
f n IVBG(T])OW) dn

-0

Relations for guantities in physical plane.- To complete the funda-
mental analysis, relations must be established between V' and the
relevant quantities in the physical plane. ILet % = %(n,0) and ¥ = ¥(n,0)
denote the coordinates at which a given velocity 1,8 1is found in the
physical plane when the profile is at zero angle of attack. As shown in
reference 3 (pp. 29-31), the transformation equations (3), when applied
to the case of zero angle of attack (and written in the present notation),
can be put in the dimensionless form

( > (2111#9&11 + ﬂrnde) ‘ (k1a)
1/3
[(7+1) (£/e)]™/® < > (29")1 A (pdn + Vpde) = _(_2%%)__&17 (¥1p)
W

where I, represents the integral

Ty = [nip(n,60) an (2)

-




NACA T 2832 ’ 23

By taking the origin of the physical coordinates at thf leading edge and
introducing the notation X = x/c and Y = [(y+1)(t/c)] /3(§/c), equa~
tions (41) can be integrated to give :

E(n,0) = ﬁ—w f (2n¥gan + ¥,a6) (438)
1/3
- 20 -
F(n,0) = 2o T g (430)
4T,

The integration in equation (43a) is performed in the hodograph over any
curve C which begins at n = ~» and ends at the point n,0. The
generalized coordinates X and ¥ at which the same velocity n,6 is to
be found when the airfoil is at angle of attack are given correspondingly

by

cq) = A
X(1,65) = = ! (2n¥gan + ¥,30) (ha)
1/3
v(n,050) = L (1)
i,

The integration in equation (Lha) is considered to be “taken, over the
same curve C as before.5 The integral I,; 1s now given by

o .
Iy = f M¥g(n,04-a) dn (45)

-0

It can be shown from equations (19), (36), and (37) that for vanishingly
small o

©

Iy = I (46)

Equations (44) can now be specialized in the light of the basic
perturbation assumption. This assumptlon implies at once that the coor-
dinates X and Y in the physical plane must be expressible in the form

5If C lies slightly outslde the domaln in which Vv is defined - as

will be the case, for example, when the integration is taken over the
upper surface of the wedge in its undisplaced position -~ ¥ is to be
thought of as being continued analytically outside the boundary.
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X(n,03a) = X(n,0) + a X'(n,6) (47a)

¥(n,03a) = ¥(n,0) + a ¥'(n,06) (47b) -

vhere X'(n,0) =X(n,9;0) and Y'(1,6) =Yy(n,0;0). If expressions (19)
and (47) are substituted into equations (hhs, and equations (43) and (46)
are taken into account, the following relations are finally obtained

for X' and Y' in terms of ':

X' (n,6) = E%-_w f (en¥pan + ‘#nde) (48a)
C
(2 1/8
Y'(,0) = -—-————z;_r) 12 ‘ (48b)
w :

The foregoing equations (48) give the initial rate of movement with
angle of attack of a point of fixed velocity n,6. One requires for
practical application, however, the rate of change of 7 and 6 at a
point of fixed location X, Y. Equations relating the two sets of deriv-
atives can be obtained as follows: If 1 and 6 are regarded in the -
physical plane as functions of X, Y, and @ - that is, 1 = (X, ¥; «)
and 8 = (X, Y; a) - then the corresponding total differentials are

dn = NxdX + NydY + qida (49a)
0 = 63X + 64dY + Ogda . (kgb)

Consistent with the basic perturbation assumption, n and 6 can be
written

1(%,1) + a 1'(X, %) (50e)

1(X,Y,a)
0(X,Y,a) = 6(X,Y) + a 6'(%,Y) (50b)
vhere T and & represent the conditions at a given point X, ¥ at zero
angle of attack and 7' and ' are defined by n'(X, ¥)=1ny(X, ¥; 0),
01 (X, ¥)=64(X, ¥; 0). 1In view of equations (50), equations (’19) can
be written for vanishingly small a
dan = f,dX + 7,4Y + n'da (51a) .

40 = B3dX + 644Y + 6'da \ (51b) .
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“ Similarly, from equations (47), one can write for the differentials
of X and Y as functions of 17,0, and a

dX = Xpdn + Xyd6 + X'da

ay = ¥, dn + Tgdo + Y'da

U
from which
Xpdn + Xpdo = &X - X'da < (522)
Tpdn + Ypd0 = aY - ¥'da (52Db)

Solution of equations (52) for dn and d6 and comparison of the results
with the alternative expressions (51) gives finally for ' and 6!

X' - Xa1

g o= 0l | (532)
Y X! - XpY!

or = "1 ‘ (53b)
Xn¥y - Xo¥y

These equations can be put_in more directly useful form by evaluating
the derivatives of X and ¥ from equations (43) and substituting for
X! and Y' from equations (48). There results finally

1" (&9 = - _._i___ [Efef(znﬂf'edn + 1lﬂnde) - ﬂ'rnllf’} (5ka)
2'{]14{62—1’{112 C
o1 (X,¥) ='-—_lé——_—§ [ifn f (2n¥han +ﬂr’nde) -2mﬁaﬂr’] (54b)
) 2n¥ —Wﬂ o

By means of these equations the initial rate of change of 17 and 6 at
some fixed point in the physical plane can be calculated corresponding
to any chosen location in the hodograph. The coordinates at which these
derivatives apply are found from the solution at zero angle of attack
by means of equations (43).
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The foregoing equations are considerably simplified when applied at
the surface of a wedge profile. Here the boundary condition is that V¥
is constant on a line of constant 6 (cf. equation (7)), with the result

that Wﬁ = 0. Equation (5h4a), for example, can thus be written as

simply .
Nt (%,20) = — —2 [ nyt(n,te,) an (55)
T (1, £6y,) [ o

where the upper signs pertain to the upper surface and the lower signs
to the lower surface. The corresponding rate of change of pressure
coefficient is found by differentiating equation (4) with respect to
angle of attack. If <« 1is used now to denote the true angle of attack
(related to the previously used, normalized angle of attack by an equa-
tion like (1b)), such differentiation then gives

(:.‘Cg) e A S
da 7+1 1/2
a=0 (Vo /ax-1) /

Here n' 1is still the derivative with respect to the normalized angle
as given by equations (5ka) or (55). With the aid of equations (5) and
(13), this result can be rewritten

ac
[(rs2) (61 ('552;0 - - 20 w (56)

It can be seen from equétion (55) and the symmetry properties of ¥
and ¥ that 7' must be of equal magnitude but opposite sign on the
upper and lower surfaces of the profile. If the local 1ift coefficient

is represented by Ap/qoss(pl -D )/ it then follows from
equation (56) that . over upper//dos

[(r+1) (t/c)1*/3 [3(%?'1] = h(2ew)l/3n'(}'c',+o) (57)

a=0

where the notation 1?(X,+0) indicates that the value is to be taken on
the upper surface of the profile. Substitution from equation (55) gives
Pinally '

‘ Ui
1/a[d(Ap/a,) h(2g,)"/2
) (/)] /| 2200 | L M T Moy g (g
da — Y, (7,0+)
a=0 n L] ﬂ: W/ -0
By means of this equation, the initial rate of growth of 1ift at any
chordyise station can be obtained. Since ¥ and ¥' are both functions
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of the parameter 0y, the generalized quantity which appears on the left-
hand side of equation (57) is also a function of this parameter. These
results are in conformity with the rules for transonic similarity (see,
for example, reference 11).

METHOD OF SOLUTTON

As in the previous calculations of ¥, the boundary-value problems
for V'y and ¥'g can be solved through the use of finite~difference
equations and relaxation technigues. A detailed description of the
general method has been given in reference 3 and need not be repeated
here. Most of the necessary finite-difference equations -~ notably the
tedious ones along the shock polar and sonic line -~ can be taken over
directly from the previous work. The only equations which need be
altered are those directly influenced by the change in boundary condi-
tions on the upper boundary and on the horizontal axis. The only real
difficulty from this source is encountered in the solution for V'3 in
the vieinity of the sHoulder (point B in sketch (£)). At the shoulder
itself, the boundary conditions require a singularity in the first
derivatives of V', which means that any purely numerical treatment
would be of doubtful validity in the vicinity of this point. This 4if-
ficulty is overcome by subtracting out an analytical solution of the
proper singular form and then working locally with the difference
between this solution and the desired unknown. The singular solution
is obtained from the general results of Guderley (reference 13) and is
expressed in terms of hypergeometric functions. The details of this
and other matters regerding the numerical calculations for the front
balf of the profile are given in appendix A.

With the solution known for the front half of the profile, the
calculation of the 1lift on the rear half i1s a simple matter. The com-
putations are carried out in the physical plane and are based on the
characteristics net previously constructed for the flow over the rear
wedge at zero angle of attack (see, for example, fig. 4 of reference 3).
Starting from the known solution for V', one first employs equations (48)
to compute the initial rate.of movement of the points at which the Mach
lines of the basic characteristics net meet the sonic line. Using these
results and the known slope of the segments of the basic net, one then
proceeds stepwise along consecutive downgolng Mach lines, calculating.
the initial rate of movement of successive intersection points on each
line. By application of the proper boundary conditions at the surface
of the wedge, the value of 7' at the surface is finally determined, and
from this the initial distribution of 1ift is calculated. The details
of the procedure are given in appendix B. -
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RESULTS AND DISCUSSION

Calculations of the 1lift have been carried out, following the
methods Jjust outlined, for the same values of 6y wused in the work
at zero lift, namely, 1.3, 1.6, 2.4, and 4.2. These values correspond,
respectively (see equation (13)), to values of the similarity param-
eter &, of 1.058, 0.921, 0.703, and 0.48k.

To illustrate the results for the front wedge in the hodograph,
figures 1 to 3 have been prepared showing the variation of *(A: v{B,
and V' for 6y = 1.6.° The results for V'g (fig. 1) are only slightly
different from those previously shown for in figure 3 of reference 3.
As before, a rapid (but regular) variation 1s apparent in the dependent
variable in the vicinity of the point n = 0, 6 = 1. The results for V'
(fig. 2) show'a rapid variation near the point 7 = 0, 6 = 6. This is
a consequence of the previously mentioned singularity in the first
derivatives of V¥', at that point. The values of V¥' (fig. 3) are
found in the present case from the equation V' = ¢'A - 0.5348 ¥ig
(cf. equation (39)). They exhibit the same behavior as does V'p in
the vicinity of the singular point but differ markedly in other parts of
the field. For reference, the numerical values from which figures 1 and 2
were plotted are given in tabular form at the end of the report.

The complete results for the 1lift of the profile are given in
figures 4 through 7. These results will be discussed in the following

paragraphs.
Chordwise Distribution of Lift

Figure 4 is a plot of the calculated 1ift distribution, in tran-
sonic similarity form, for the four values of §, considered in the
present work. Also shown are the results for §5=0 (Mg = 1) given by
Guderley and Yoshihara in reference 9. It is convenient for purposes
of discussion to think of a similarity plot, such as that of figure 4,
ag pertaining to fixed values of - t/c and y. From this standpoint, an
increase from zero in the similarity parameter £, is equivalent to an
increase from 1 in the free-stream Mach number M,. For simplicity,
this point of view will sometimes be adopted in the descriptions that
follow. .

®For the calculation of ¥'y in this example, use was made of 236
lattice points distributed as shown for VY in figure 2 of reference 3.
For V¥',, 380 points were used with a distribution appropriate to the
altered behavior of the dependent variable.
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The 1ift distributions of figure I are all of the same general
shape. In all cases the calculated 1ift tends toward infinity at the
leading edge of the profile. This type of result, which is of course
physically impossible, is well known from the linear theory of airfoils
at subsonic speeds. It is a result of the obvious failure of the small-
disturbance approximations to conform with the actual phenomena in the
vicinity of the leading edge. This locel failure of the theory is
known in the linear, subsonic case to be of little consequence insofar
as the over-all 1ift is concerned. It may be presumed that a similar
situation exists here.

As one proceeds rearward from the leading edge, the 1lift distribu-
tion falls more or less rapidly, reaching a value of zero directly
forward of the shoulder. This latter result could have been foreseen,
since the speed on both the upper and lower sﬁrfaces has g fixed
(i.e., sonic) value at this location. Directly to the rear of the
shoulder, the 1ift distribution starts anew from zepro. This must
obviously be the case, since the expansion from sonic speed is, in
Prandtl-Meyer flow, a unigue function of the local turning angle, which
1s the same for both surfaces. Rearwerd from the shoulder the 1lift
increases monotonically to a relatively small, finite value at the
trailing edge.

Over the front wedge, the four curves of the present study exhibit
& uniform progression with respect to go. The curve of Guderley and
Yoshihara, however, crosses the present curves at several points. The
reasons for this are not clear, though it is highly unlikely that such
8 result could be 1n fact correct. The observed behavlior may be due to
some consistent inaccuracy in the present numerical approach or to the
approximations introduced by Guderley and Yoshihara in satisfying the
boundary conditions for the interdependent portion of the supersonic
expansion fan. Over the rear wedge, the present computations give vir-
tually a single curve for the four values of §o. There is again, how-
ever, a small incomsistency with the results given by Guderley and
Yoshihara. This is as might be expected if the calculated flow over the
front wedge is in error in either case.

Lift-Curve Slope -

Figure 5 shows the generalized slope of the 1lift curve at zero
angle of attack plotted as a function of the transonic similarity param-
eter. Results obtained on the basls of the transonic small-disturbance
theory are shown by three solid~line curves. Each of these curves con~
sists of two segments separated by a gap within which the curve cannot
be defined on the basis of the available results. The uppermost of the
three curves gives the 1ift of the complete profile; the other two show
the division of 1lift between the fromt and rear wedges.
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The left-hand segment of each of the curves in figure 5 shows the
variation of lift~curve slope over most of the range of flight speed 1n
which the bow wave is detached, which is the range of primary concern
in the present analysis. The calculated points from which these curves
were drawn are shown 1n the figure. The points denoted by squares were
obtained by mechanical integration of the lift-distribution curves of
Tigure 4.7 The circled points on the vertical axis were located on the
basis of the work of Guderley and Yoshihara.

The right-hand segment of the curves in figure 5 shows the varia-
tion of lift-curve slope in the range of flight speed in which the bow
wave is attached and the flow is completely supersonic. To the order
of accuracy of the present theory, this condition exists for the double-

wedge profile at zero angle of attack when ;Dg-al/s = 1.260.2  Avove
this value, results completely consistent with the fundamental assump-
tions of the transonic small-disturbance theory can easily be obtained
by analytical methods. To this end, one need only presume that the
speed is constant on each straight-line portion of the airfoil surface,
a condition which is actually fulfilled over most of the pertinent
range of . The necessary procedures are outlined in appendix C. To
the accuracy of the transonic small-disturbance theory, the results
provide an exact solution for the lift-curve slope of the front wedge
for all values of £, in the range of completely supersonic flow. For
the rear wedge ~ and hence for the complete profile -~ the solution is
exact down to a limiting velue of £, somewhat greater than 1.260.
Below this 1limit the interaction of the shock wave from the bow and the
expansion fan from the shoulder influences the flow over the rear wedge,
with the result that the condition of constant speed is not satisfied.
The position of this limit is difficult to determine exactly. As shown
in appendix C, however, it must lie at a value of go less than 1.287.
The curves for the rear wedge and complete profile are thus epproximate
for at least a portion of the interval from 1.287 to 1.260 and are
therefore shown dotted in this range. It can be demonstrated that
inelusion of the interaction effects in the analysis would cause an
increase in the computed 1ift for the rear wedge. Exact results would
thus lie somewhere aboye the dotted portion of the curves in figure 5.

7As in the earlier calculations of the drag coefficlent at zero angle
(cf. page 36 of reference 3), the integration over a small interval
neer the leading edge was carried out analytically on the basis of an
asymptotic representation of the solution in the hodograph plane.

8 pttachment of the wave takes place at the somewhat lower value of

£, = 3/(1%/® = 1.191. For 1.191 < &, <1.260 the wave is attached
but the flow behind it is still subsonic.
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The most interesting aspect of figure 5 is the behavior of the 1lift
in the wvicinity of shock attachment. Despite the. gap in the curves in
this vicinity, it is obvious that the lift-curve slope of the complete
profile must attaln a meximum somewhere in the range from g = 1.058
to &, = 1.287. This is in marked - and somewhat surprlsing'-contrast
to the previous results for the drag coefficlent at zero angle of attack,
which was found (reference 2) to decrease monotonically as the similarity
parameter increased above zero. The peak in the curve in the present
case 1s accompanied by a similar variation in the lift-curve slope of
the front wedge. The results for the rear wedge may or may not pass
through a minimum in the same range of £,.

A determination of the exact shape of the curves in the vicinity of
shock attachment is not feasible on the basis of the present laborious
methods. The existing curve for the complete profile does show a maximm
in the range of completely supersonic flow, but this is in the portion
of the range in which the computed curve is known to be erroneocusly low.
If exact results were avallable for all values of §_, the maximum would
undoubtedly be somewhat higher and displaced somewhat to the left. The
infinity which appears in the slope of the curve at &, = 1.260 (see
appendix C) would probably disappear as well. The lift of the rear
wedge, which now goes to zero at 5 = 1.260, would presumably remain
finite throughout.

Within the transonic range 1ltself, the curves of figure 5 show
little variation for some distance above a similarity parameter of zero.
This is in accord with Guderley's recent analytical study of two-
dimensional flows with a free-stream Mach number close to 1 (refer-
ence 14). The results of Guderley's work imply that, to the accuracy
of the small-disturbance theory, the lift-curve slope does not vary as
the free-stream Mach number passes .through 1. The curves of figure 5.
have been faired so as to conform with this requirement. It is apparent
that Guderley's result of zero variation may be teken as a good working
approximation even at Mach numbers some distance removed from 1. The
same result was found in reference 3 with regard to the drag coefficient
of the complete profile at zero angle of attack.

Over most of the range of completely supersonic flow, the 1ift-
curve slope of the complete profile exhibits the type of variation well
known from linear theory. This latter theory gives for the lift-curve
slope of all thin profiles .

dcl ).l.
S dn

o (59)
(MO 1)1/2 )
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which can be written in terms of the transonic similarity variables as

d -
() (6fe*° k= =7 (60)

(o}

The dashed curve in figure 5 is based on this equation. There is con-
siderable quantitative difference between the ‘linear and nonlinear
results for values of &, Jjust above 1.287. As' £, increases, how-
ever, the curves given by the two theories appear to converge. This
latter behavior is in accord with Spreiter's considerations (refer-
ence 11) regarding the basic relationship between the linear and non-
linear theories.

To put the results in more familisr form, the lift~curve slope of
the complete profile has been replotted in figure 6 as a fumction of
Mach number for 7 = 1.4. The results of linear theory give a unique
curve d=fined by equation (59). The nonlinear, transonic theory pro-
vides a family of curves with thickness ratio as a parameter.® As

‘would be expected, the range of Mach numbers over which the linear
theory is a poor spproximation becomes smaller as the thickness ratio
is redquced. It can be reasoned, in fact, that the nonlinear results
must tend toward the results of the linear theory as t/c—>0.

Center of Lift

Figure 7 shows the chordwise position of the center of 1ift (x/c)z
as a function of the tramsonic similarity parameter. The arrangement
of the figure parallels that of figure 5. As befofé, the indicated
points were calculated on the basis of the 1ift distributions of
figure 4. The curve in the range of completely supersonic flow
' (go 21.260) was obtained by means of the equations of appendix C.
Only results for the complete profile are shown.

9Here, as in reference 2, a multiplicity of curves could be obtained
for each thickness ratio by using expressions for the presgure coef-
ficient and similarity parameter different from those of equations (k)
and (13). In view of the recent developments outlined in footnote 2,
such complications now appear to be of lessened significance.
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The movement of the center of 1ift with increasing Mach number is
of some interest. At a free-stream Mach number of 1, the results of

. Guderley and Yoshihara indicate a position gbout 29 percent of the

chord aft of the leading edge. As the Mach number is increased, the
center of 1lift first moves forward, slowly in the initlal stages and
then more rapidly as the condition for shock attachment 1s approached.
In the completely supersonic range, this trend is reversed; the center
of 1ift then moves aft toward the midchord location given by linear
theory. Apparently, the reversal of the direction of motion must take
place rather suddenly in the vicinity of shock attachment. The limit
of forward movement cannot be specified, except to say that it must lie
somewhere shead of 22 percent of the chord (and probably aft of the
leading edge). The dotted (i.e., inexact ) portion of the curve passes
precisely through the quarter-chord point at &, = 1.260. (The corre-
sponding 1ift distribution is one of uniform 1ift on the front wedge
and zero 1ift on the rear.) Because of the interaction effects
previously discussed, an exact result would lie somewhat above the
dotted curve. !

CONCLUDING REMARKS

The present calculations add support to the growling conclusion
(see references 2, 6, 7, 8, and 1k4) that no marked changes take place
in characteristics of airfoill sections as the free-stream Mach number
passes through 1. The establishment of this conclusion must be regarded,
in fact, as one of the major successes of recent research in transonic
flow. In the present case, as in the previous study of the drag coef-
ficient at zero 1ift, the variation of the aerodynamic quantities with
free-stream Mach number is most rapid in the vicinity of shock attach-
ment. Unlike the behavior of the drag coefficient, however, the varia-
tions here are large and characterized by a sudden reversal in the sign
of the derivative. In drawing conclusions from these results it must
be remembered, of course, that the theory assumes an inviscid medium
and an airfoil of small thickness and infinite span. It also assumes,
in effect, that the angle of attack is of an order smaller than the
thickness ratio. To what extent the results will be valid for viscous
flows about finite-span airfoils at practically usable values of the
thickness ratio and angle of attack is difficult to say. The effects of
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finite span, for example, will surely cause a reduction In the variations
near shock attachment. In the present state of theoretical development,
the study of these effects is a task for experiment.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 1, 1952
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APPENDIX A
SOLUTION OF BOUNDARY~VALUE PROBLEM

FOR FRONT WEDGE IN HODOGRAPH PLANE

The solution of the boundary-value problems for W'p and V'p was
accomplished by finite-difference methods similar to those developed for
the calculation of ¥ i1in reference 3. The description here will be
limited to the few features wherein the presgent work departs from that
discussed in the earlier paper. (See general remarks under METHOD OF
SOIUTION,) The notation and sketches follow the -conventions used in
reference 3.

Finite-Difference Equations Common to Both Problems

The only finite-~difference equations common to the problems for
Vi, and ¥'g but not found in the problem for ¥ derive from the bound-
ary condition on the horizontal axis (see sketches (e) and (f)). This
condition is given for both problems by equation (38) and is $'e(n,0) =0
for 7 S-1. In the previous work, the finite-difference equations for
lattice points located on a boundary were obtained by approximetion to
the boundary condition itself. A In the present case, the approximation
to the differential equation will be employed, and the boundary condition
incorporated through use of the equivalent symmetry property.

~

Consider a typical point O- on the horizon-
tal axis as shown in sketch (g). Point 3 is =&
fictitious lattice point located below the hori- 4
zontal axis at 6 = -A, where A 1is the lattice
interval. The finite-difference approximation to ¢ 4 OI 4 2
the differential equation (20) of the present I
text 18 given by equation (20) of reference 3 as 14

|

Vip + ¥, = 2no(¥'y+¥tg) = 2(1-2n0)¥'g = O (41) !

where 1o 18 the abscissa of point 0. The symme- Sketch (g)
try property leading to the boundary condition (38)

requires that V¥'s = V¥?!;, so that for points on the horizontal axis equa-
tion (Al) reduces to

*'2 + 11'4 = ,'"T]o‘b"l - 2(1"2“0)1]”0 =0 (A2)
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The point at the intersection of the horizontel axis and the shock
polar needs special comsideration. Sketch (h) shows conditions at this
point. Here, as before, point 4 is a Picti-
3 tious point located below the boundery sym-
) —T metrical to point 3. It follows from the
boundsry conditions (25) and (38), both of
4 which must be satisfied at the point O, that
2 A / 4 0 l the first derivatives in the coordinate
*ﬁ l*iA directions are both zero at that point. On
the basis of this fact, if the function
\ ¥1(n,60) is expanded in a two-dimensionsl
P Taylor's series about point O, the following
finite-difference relations for the second
Sketch (h) derivatives are easily obtained:

1 — 1 l T 7 )
Az*nn'c’wl‘ij’a"é‘yo

sz'eelo = 21#’3 - 2‘4”,0 - ]§2A2¢'1Tn o)

Here the symmetry property about the horizontal axis has been used to
equate ¥', to ¥'g. Substitution of these relations into equation (20)
for n = -1 leads to the following finite-difference equation for the
point O:

b(1-2x2)¥' - -é- (L-2x®)¥r , + W - [u +% (1-2k2)]\lr'o =0 (a3)
Finite-Ditference Equations Special to V'p

The only finite-difference equation special to the problem for ?’B
is the one used to terminate the field of computation at some vertical
line on the left. As in the corresponding work for ?, this equation is
derived from an asymptotic solution of the boundary-value problem valid
for large negative values of . The derivation is parallel to that
described in detail on pages 16 and 17 of reference 3.

The boundary conditions which

%(7.4,)=0 must be satisfied by VY'p at large
negetive values of 1 are shown in
sketch (i). The shaded section shows

< [%=o the anticipated variation of V'p
for p—-w for constant 1. A solution of the
differential equation which satisfies
the given boundery conditions is
5"5;(7,0#0

Sketch (1)
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¥1g(n,6) = Z Cn cos(%;—%)xﬁ Kl/3[69w, _2,”)3/2]

n=1

where Kiss 1is the modified Bessel function of the second kind of
order 1/3 and the C, are appropriate constants. If only the leading
term of this solution is used and the Bessel function is replaced by the
firgt term of its asymptotic expansion, there results

B("be) = C cos 56y >X( -) Ti/4 exPl: 66‘,1- (- 271)3/2]

As in the earlier work, let A denote the lattice interval and B some
large negative value of 1 such that A/p<<l. It then follows from the
foregoing solution that, to a first order and for a given value of 6,

B0 (o a) (g m)
B(-B 8)
By substituting this relation into equation (Al), a finite-difference
equation can be obtained which is velid for points on the line 1 =

and does not include any points to the left of this line (ef. equation (22)
of reference 3).

Finite-Difference Equations Special to V¥'p

The only equations special to the problem for V¥'p arise as a con-
sequence of the condition along the upper boundary, where the values
of W'A are prescribed as a function of 1. Along most of the boundary,
this condition can be met by substituting the prescribed values directly
into finite-difference equations of the type (Al) for points one interval
below the boundary. Because of the nature of the boundary values
near 1 = 0, however, some change from previous procedures is necessary
in the vicinity of the shoulder. Modification is also required in the
equations used to terminate the field on the left.

Points near shoulder of wedge.- From the known behavior of ¥ in
the vicinity of the shoulder (see Guderley's results, reference 13, for
the flow around & convex corner), it can be shown that the variation
of V'p along the upper boundary near 1 = 0 must be of the form

¥t a(n,6w) = ¥g(n,0y) =D (-n)1/2 (a5)

where D is a constant of proportionality. A singular solution of the
differential equation (20) which is valid in the vicinity of the shoulder
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and which satisfies the boundary condition (A5) is also obtainable from
Guderley's results. This solution is, in the present notation,

(/2 (/e w1 1 1. &
ﬂfAS(T],e)—D(T]) (1 g) F( c’ 3: 2:*§_—1 (46)
vhere F is the hypergeometric function and ¢§ = {(,0) is defined by
§=2(LW'Q_)2_
=8

Equation (A6) is suitable for use near the upper boundary (6 % 6y, & 2 0).
Near the sonic line (- 20, { & - ») the following alternate form is
available:

>+

1/6
: = D s, 2 2 112
g (120) = =273 {[(-ﬂ) + 5 (64-9) } F( 23 3 T

(-2 12 b
22/3(1-)1/8 <6 3’3 1§>} (D)

If equation (A7) is evaluated on the sonic line, there results

l

27/3 ®p (6w~ 0)*/ (A8)

ag (0,0) =

This result is in agreement with equation (32), which was developed from
other considerations. It is apparent from equations (A5) and (A8) that
a solution for V'p will have a singularity in the first derivatives at
the point 71 = 0, 6 = By.

Because of the foregoing singularity, a direct numerical calculation
of V¥'s might be expected to run into difficulty in the viecinity of the
shoulder. Attempts along these lines lead, in fact, to the unlikely
result of negative 1ift over a small region of the profile just forward
of the midchord. Reductions of the lattice interval to quite small values
served merely to decrease the extent of this region. This is in contrast
to the previous work for ¥ (and for V¥:p as well), in which the singu-
larity at the shoulder appears in the second derivatives. In that case,

a sufficiently accurate solution for the unknown function could be obtained
by direct calculation. In the present work, it was found necessary to
subtract out the singularity in the first derivatives according to the
following procedure:

Let a function ®¥'y be defined such that

Sy = ¥ 'A‘W'AS
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where i!'A is a singular solution of the type given by equations (A6)
and (AT). PIf the actual, mumerically determined values of V'3 on the
upper boundary are examined, it is found that for a small length of the
boundary near the shoulder these velues can be replaced to a good approxi-
mation by a 1/2-power variation of the form given by equation (A5). This
is done, and the constant D is determined such that within this length
of boundary V¥'s (1,0y) = ¥'a(n,64) or d¥'p = 0. On this basis, a
boundary-velue %%oblem for ©&¥'y can be defined for a small region near
the shoulder as shown in sketch (j). The
problem for &Y'y within this region is |
solved jointly with the problem for V'p |
|

B
|
in the remainder of the field. The two ’ /I
regions are fitted together by the use of (5%, +4, (S¥, 0

| ” '

overlapping lattices, much as is done in @4-8)*7>

the case of & graded mesh (see reference 15). | %

The only difference is that equation (AQ) / ey
must now be utilized to make the transition =4

between the two lattices at all theilr common Sketch (3)

points. It is seen from sketch (j) that

conditions for &¥'y on both the upper boundary and sonic line are
identical with the corresponding conditions for V. The finite-difference
equations for the calculation of 8¥'sy can therefore be taken over
directly from the previous work.

As nearly as one can judge from experience with various lattice
spacings, results obtained by the foregolng process are quantitatively as
well as qualitatively reliable. The primary source of error is in replac-
ing the actual values of V¥'p along the upper boundary by a l/2—power
variation. Since the region over which this is done in the hodograph
corresponds to a very small portion of the chord in the physical prlane,
errors from thie source are probably small.

Points far to the left.- The
boundary conditions for ¥'a at
large negative values of 1 are
shown in sketch (k). From the %8y )- 57, 8,)
asymptotic solution for the basic
problem (equation (21) of refer-
ence 3), the expression for V¥'a

/-
along the upper bounda.ry is found fo o
y 9 -
to be
by 0)=0

Sketch (k)
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¥ip (n,04) = Fg(n,0w=E (-0) "M% exp [- '3%; (-QTI)S/E] (410)

where E 1s a constant.

Because of the nature of the boundary condition (AlO), it is not
possible to write an asymptotic solution for W'A for large negative 1
in a single term. For this reason, the procedure previously used to
terminate the field of calculation at some location on the left cannot
be applied in the present case. An alternative procedure, somewhat more
arbitrary in nature, can be devised by writing V' in the form

1y (n,8) = ¥y (1,68y) + 8Y,(9,6) (A11)

vhere B®¥'y is now defined by 5¥14 (1,0)=¥1 (n,6) - V! (n,0y) (see
sketch). The attenuation of ¥y in going from a poiﬁ% at 7 =-B

to & point at m =-B - A is then found by treating each of the terms

in equation (All) as an independent quantity. The attenuation of
wa(n,ew) is found from equation (A10) by & procedure similar to that used
in obtaining equation (Ak). The result is

¥ty (=B-0,8y) = [(1 - IAB' exp <— -9—-"3 @)Jm (-B,6y) (Al\2)

To obtain a corresponding equation for sng, it is assumed that for a
given value of 6 this quantity attenuates in the same manner as was
previously found for V¥'p. One thus has from equation (A4)

Yy (-81,6) = [ (1 - %) exp (— 5’;%_ Jz—ﬁﬂav'A(—B,e) (A13)

Substitution of these expressions in eguation (Aa11) for nm = -B - A
gives finally

1, (~B-0,0) = <l_hAs> exp <- %,f‘é‘é) y A
{[exp <—§%—WJ"2—B>—1:|W'A(-B,?W) + ﬂr'A(—B,e)} (A1k)

Since Vi (-8,6y) 1s a known quantity for any given value of B, this
equation can be used to terminate the field of calculation in the same
pemner as was done with equation (AL). The considerable element of
arbitrariness in the derivation of equation (A1) can be tolerated since
the over-all solution is insensitive to changes in the left-hand portion
of the field.

e — e
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Solution of Finite-Difference BEquations

The techniques used to obtain a solution of the finite-difference.
equations for V', and W' were the same as those described in refer-
ence 3 for_the basic solutlon of V. In general, the graded lattice as
used for V¥ (see fig. 2 of reference 3) was suitable for the solution
of V¥'g. For V', however, different gradations were necessary with
the smallest lattice spacing being used near the shoulder (point B of
sketch (e)). The value of V¥'p at the intersection of the shock polar
and the sonic line was chosen as 10,000 so that the previously obtained
values of ﬂr could be used to prov1de the initial guess for V'g.

In the course of the present work, a useful technique was found for
locating regions of relatively large error in the numerical solution.
By use of one form of Green's theorem plus the differential equation (20),
i1t can be shown that around any contour enclosing & region in which
equation (20) is satisfied the following relation must hold:

f (2n¥idn + ¥ a6) = 0 (A15)

In a numerical solution the line integral in equation (Al5) will not,
except by rare coincidence, be precisely zero around any given contour.
The amount by which it differs from zero may be taken as a rough measure
of the adequacy of the numerical solution over the region within the
contour. If .the entire field of calculation is subdivided into a number
of contiguous regions, it is thus possible, by evaluating the integral
around each of the enclosing contours, to locate regions within which
the error is relatively high. The solution in these regions can then be
improved by advancing locally to a finer mesh. This technique was found
to be of great 'help in the present work. It would probably be useful in
other elliptic boundary-value problems for which a relation analogous to
equation (Al5) can be obtained.
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APPENDIX B
CALCULATION OF FLOW OVER REAR WEDGE

TN PHYSICAL PLANE

. The procedure used to calculate the flow over the rear wedge has
been outlined In the section METHOD OF SOLUTION, The fundamental opera-
tion is to determine, by stepwise methods, the initial rate of movement
of the known intersection points in the basic characteristics net. The
methods which are used depend on the fact that these points are, by
virtue of the basic characteristics construction, points of fixed 1,0
(cf. equations (55) and (57) of reference 3).

The first step is to determine the initial rate of movement of
those points at which the Mach lines of the basic characteristics net
meet on the sonic line. For this purpose, consider equations (48),
vwhich give the initial rate of movement of a general point of fixed 17,6.
If these equations are specialized to apply to points on the sonic line,
the following relations are obtalned:

e
1
X! ) = — 1_4e Bla
(0,0) = - [ ¥ (Ble)
w
1/3
11 (0,0) = 28 1. (B1b)
LT,

To write equation (Bla) the path of integration in equation (L48a) is
taken along the upper boundary from O to B (see sketch (e) on page 21)
and thence downward along the sonic line. The contribution of the
portion from O to B is zero by virtue of the condition (37). In apply-
ing these equations, the value of I, is known from the basic solution.
The integral in equation (Bla) is evaluated by mechanical integration
of a curve of numerically determined derivatives. Proper allowance 1s
made for the singularity at the shoulder by integrating the slingular
solution analytically. The component rates of movement of the sonic
point at the shoulder are both seen to be zero.

The next step in the solution is to calculate the rate of movement

of intersection points downstream of the sonic line. This is done by
proceeding stepwise along consecutive downgoing characteristics.
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Consider three typical net points as shown in sketeh (1) (cf. also
fig. 4 of reference 3). The dashed lines represent the original posi-
tion of the Mach lines through points a, b, and c, and the solid lines
represent thelr displaced posi-
tions corresponding to a small,
finite angle of attack a.

Since the intersection points in
the Mach net are points of fixed
n,6, the components of their
displacement are given by oX'
and aY'. The slope of each segment
of Mach line is taken, in accord
with the procedures of refer-
ence 3, as the average of the
slopes calculated at the two end
points. The slope calculated at
each end point depends, iIn turn,
only on the value of 1 at that
point (cf. equation (54) of
reference 3).

It is desired now to deter-
mine X! and Y' at point c¢ in Sketch (1)
terms of X' and Y' at points a
and b. Since the value of 7 at a given net point is the same in the
displaced and undisplaced positions, it follows from what has been said
above that each segment of Mach line must retain its original slope
after displacement. If this slope is denoted by m, the following
relations are then readily obtained:

Y -Yh 45X " - HgcX "
Xy = a 'b- Ihe i ch g (B2a)
Dhe = Mo

_ OpeY'g -Mge¥'p +iig clipe (X' ~X'a )
Y, = (B2b)

EIbc - Hge

With these relations, it 1s & simple matter to calculate the initial
rates of movement of successive net points on consecutive downgoing
characteristics. For the first characteristic to be considered, point
b is taken at the shoulder of the profile, where X' and Y' are both
zero. Thus, X'c and Y'¢ for net points on this characteristic can be
determined solely in terms of X'g &8nd Y'y and the slopes i@ge and Mpe.
For the remainder of the downgoing characteristics, X'y and Y'y are
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‘known from calculations along the characteristic immediately preceding.
The actual calculations can be carried out in stralghtforward tabular
form.

The foregolng procedure ensbles the calculation of X' and ¥Y' <for
all net points except the ones originally at the surface of the rear
wedge. For these points, consideration must be given to the required
boundary condition at the surface. This boundary condition is

’

0(X,+0;a) = - (B4a) (B3)

from which it follows that
81 (X,+0) = - 1 (B4)

The problem now is to determine X' and Y' at the surface of the
wedge in such a way that equation (BY) is satisfied. To do this equa-
tion (53b) is first specialized to the surface of the wedge, where it
is readily shown that Xy = ¥y = 0. In view of condition (B4), there
results

Yt (n,-6y) = T5(n,-6w) (B5).

The vaelue of Y!' at points originally on the surface of the wedge is
thus fixed directly by the baslc solution. The corresponding value of
X' can be found from a construction analogous to that of sketch (1)
and is

Y, -Y', -m 1
- [&]

The point ¢ 18 now the point originally on the surface of the wedge
(i.e., ¥'¢ 1is as given by equation (B5)), and the remaining notation
is the same as in sketch (1).

Application of equation (B5) requires the knowledge of To(n,-6%)»
which in the case of the wedge profile is equal to l/Gy. Evaluation
of the latter derivative can be carried out directly from the basic
Mach net, but the procedures are cumbersome and inaccurate. A better
method is to use the equations of motion (cf. equation (6) of refer-
ence %) to express 8y in terms of fz. Following this procedure, one
obtains finally

(20,)"/°

2(X,0) 1y (X,+0)

i.fg(rl:"ew) = (BT)
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The quantlties f] and fly which appear here are easily evaluated from
the basic solution for the chordwise distribution of 7.

The preceding equations enable the calculation of the initial rate
of movement X! for points originally on the surface of the rear wedge.
The Tinal step is to determine the corresponding distribution of 1ift.

For this purpose, equation (53a) is specialized to points on the rear
wedge to obtaln

T]'(X:"'O) =-X' (T'l,“ew)/ﬁﬁ(ﬁ,"ew)

which, in view of the boundary conditions, can be shown to be equivalent
to :

n' (X:’H)) =~ X! (Tl:"e‘W)ﬁx(i,"‘o) V (B8)

The distribution of 1ift is then obtained from equation (57).
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APPENDTIX C

SOLUTION OF FROBLEM FOR COMPLETELY SUPERSONIC FLOW

Calculation of Lift~Curve Slope and
Center of Lift

If conditions are such that £,2 21/8 - 1.260 (corresponding
to 6y<1; cf. equation (13)), then the basic flow over the profile at
zero angle of attack is completely supersonic. The solution for the
lift-curve slope and center of 1ift at a vanishingly small angle of
attack can then be carried out analytically as follows:

Consider a completely supersonic flow about the double-wedge profile
at a small angle of attack. In the physical plane the flow field has
the well-known appearance shown on the left in sketch (m). The corre-
sponding hodograph of the flow along the upper surface, in terms of the

'3

Prand?!- Meyer

! 5""”””5i0” _—Shock polar
§=4-a
N /G‘/Iarac/er/'s//‘c
\
\
+— v 7
7 \ %
\
\

\

I \
4=~4-a 2

Sketch (m)

normalized small-disturbance variables 17 and 6, is shown on the right.
The quantities 6Oy and @ are, as before, the half-angle of the wedge
and the angle of attack (also norma.lizeds. Except for a small range
of §, Just above 1.260 (see below), flow conditions must be constant
along each of the segments 1 and 2 of the upper surface. In the hodo-~
graph each of these segments is thus represented by a single point
located as shown. It is apparent that for a given value of 6, the
speeds n; and 15, which are the primary unknowns in the problem, are
functions solely of ~the angle of attack a.
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To find the lift-curve slope and center of 1ift it is necessary
first to find the derivatives 17';= (dn;/da)y-o and 1’5 =@n,/dx)g=0-
This can be done with the aid of the equations for the shock polar

"6 = (1-n)~ 14 (c1)
and for the downgoing characteristic®
a/2 .
6 = constant - 2 78/2 (c2)

To find n';, one must utilize the boundary condition 6; = 6y - «.
Substitution of this condition into equation (Cl) provides the following
implicit equation for LUPE ’

6y - @ = (L-n,) ¥ 1+, (c3)
Differentiation of this equation gives

da 1+3n 1

dn, 2*/1+Tl1

From this it follows that

24/ 1+,

ch
1+30, (ch)

0, =

where, as in the text, the bars denote the value of 7, at a = 0.

The value of ﬁl can be found in terms of the parameter 6y by solving
equation (C3) for 10, with « set equal to zero. The result, obtained
through standard methods for the solution of cubic equations, is

.._E./i_?_w__q.]_

Ny =
2 cos £§9

3 ,3
= 2 [20
@ = arc cog <' Y)

1oCompare equation (53) of reference 3.

(c5)

where
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To find 7'y, equation (C2) for the downgoing characteristic 1is
first specialized so as to pass through the point 1. This gives

a/2 ‘
= (6y-a) + 2-3—{- (n,8/2 - n3/2)

Substitution of the boundary condition 65 = - 6y - a then provides

the result that
3 2/3
Mz = <T|13/2 + == 9w>
N2

* Taking the ‘derivative with respect to a, one obtalins finally at a =0

- 1/2
U]
1, = 2 n'y (c6)

_ 1/3
(2= o)

vhere 1'; 1is given by eguation (Ch) and i, by equation (c5).

Since the value of 7' 18 constant on each segment of the profile,
the lift-curve slope is easily found from equation (57) and is

de
O+ (/™ () = 202002ty nty)
. a=0

Substitution from equation (C6) gives

de 7, /2

[(7+1) (£/c)1*7® (E&ELO = 2(209)" 0" |1+ - - /; TN (cT)
+ S——
("1 JE

The mament-curve slope, for moments taken about the leading edge, is
found to be .

dn'a-_-o

[(7+1) (£/e)] /3<-—— = - -:25 (26w) /% (ny + 3n';)
or

) o/ H(5E) = - L oo/, |1+ o2 (08)
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The position of the center of 1ift is gilven accordingly by

3ﬁll/2
1
<> _ (denfaa)ey 3 % ) L7, /% (3/“/5?9"]1/3 ' C9)
(dez/da) R 7,272 (cs

O [8,%3 (3W2)e, 1Y%

In equations (CT) and (C8), the first term inside the brackets repre-
sents the contribution of the front wedge, the second term that of the
rear.

BEquations (C7) and (C9) are the basis for the curves shown in
figures 5 and 7 for values of §021J260. The results show certain
curious features when the flow over the front wedge is Just sonic
(1.e., f,=0, 6y=l, £,=1.260). These are as follows:

(a) The 1lift contributed by the rear wedge is zero (see equa-
tion (CT).

(b) The center of 1ift is at the quarter-chord point (follows
from statement (a) plus the condition of uniform 1ift on the front
wedge; see also equation (C9)).

(¢) The rate of change with respect to “is infinite both for
the lift-curve slope of the complete profile an8 for the position of
the center of 1lift (follows from differentiation of equations (CT7)
and (C9))-

These results are assoclated in every case with the behavior of the 1ift
calculated for the rear wedge.

. Estimation of Lower Limit for Constant Speed
Along Rear Wedge

The features just enumerated, though having a certain curiosity in
themselves, cannot be accepted as completely correct. Because of inter-
action effects between the shock wave from the bow and the expansion
fan from the shoulder, the fundamental condition of constant speed at
the surface of the profile will not be satisfied along the rear wedge
until the value of £, is somewhat greater than 1.260. TUntil then,
disturbances reflected from the shock wave will reach the rear wedge
and cause a slight decrease in speed toward the trailing edge. This
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effect will cease when the forwardmost reflected Mach wave Just touches
the trailling edge. The exact value of €, at which this condition will
be met is 4ifficult to determine. An upper bound can, however, be esti-
mated as follows:

Consider the basic flow field (o=0) over the upper half of the
profile when the fTirst reflected Mach wave Just strikes the trailing
edge. Sketch (n) shows such a flow field as it would appear in tran-
sonic similarity form (cf. pp. 12-13 of reference 2). In drawing the
sketch a special agsumption has been introduced beyond those implicit
in the small-disturbance theory; namely, that the first reflected Mach

Shock wave

First Mach wave

“_Assumed flocation
of first reflected
Mach wave

’ 0 /2 34 7/
x/c
Sketch (n)

wave 1s straight and has an angle of inclination p equal to that of
the first wave in the expansion fan. With this assumption, the corre-
sponding value of o is easily determined. Since the reflected wave
must actually be curved downstream, the value so determined will be
greater than the correct value for the required condition.

On the basis of sketch (n), the following equation can be written
between the shock angle A and the Mach angle p:

tan A = = tan p (c10)

w |-

A relation between the shock angle A and the speed ﬁl in the region
behind the shock can be obtained from equation (C3) and the known prop-
erties of the shock polar. The result is
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(29w)1/3

tan A = —2——

J1+ﬁl

An analogous expression for the Mach angle p is given by equation (54)
. of reference 3 and is

(26,) .
W=
»/2711
Substitution of these relations into equation (Cl0) and solution for 1,
gives
= 1
1'[ = e—

The accompanying value of 6y, found from equation (C3) with a=0, is

O = 0.9685

This corresponds, according to equation (13), to

£,= 1.287 (c11)

Thus, for values of £, between 1.260 and some limit less than 1.287,
the results of equations (CT), (C8), and (C9) are not exact insofar as
the contribution of the rear wedge is concerned. It can be reasoned
that in this range an exact solution would indicate more 1ift for the
rear wedge than does the present analysis.
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